Pengaruh Feed Rate pada Friction Stir Welding Polypropylene Menggunakan Tool Aluminium 7075 Terhadap Kekuatan Tarik dan Lentur
DOI:
https://doi.org/10.52436/1.jpti.1278Kata Kunci:
Aluminium 7075, Feed Rate, Friction Stir Welding, Kekuatan Lentur, Kekuatan TarikAbstrak
Friction Stir Welding (FSW) merupakan metode penyambungan fase padat yang efektif untuk material termoplastik seperti Polypropylene (PP), terutama dalam industri otomotif dan manufaktur ringan. Tantangan utama dalam penerapannya pada polimer adalah pengendalian parameter proses, Khususnya kecepatan pengelasan (feed rate), yang memengaruhi kualitas sambungan. Penelitian ini bertujuan untuk mengevaluasi pengaruh variasi feed rate terhadap kekuatan tarik dan lentur pada sambungan polypropylene yang dibentuk melalui proses friction stir welding (FSW). Proses dilakukan dengan menggunakan mesin frais, dengan tool berbahan aluminium 7075 dan pin silinder ulir. Variasi feed rate sebesar 15, 20, dan 25 mm/menit diterpakan dengan kecepatan putar konstan 1460 rpm dan sudut kemiringan 0°. Evaluasi dilakukan melalui pengujian tarik (ASTM D638), lentur (ASTM D790), serta pengamatan makro terhadap stir zone. Hasil menunjukkan bahwa feed rate 15 mm/menit menghasilkan stir zone yang paling homogen dengan cacat internal yang rendah dan kekuatan tarik tertinggi sebesar 13,485 MPa, setara efisiensi sambungan 44,06%. Sementara itu, kekuatan lentur tertinggi sebesar 15,179 MPa dicapai pada feed rate 25 mm/menit, dengan efisiensi lentur sebesar 32,1%. Feed rate tinggi cenderung menyebabkan cacat seperti void dan incomplete fusion akibat distribusi panas yang tidak merata serta plastisitas material yang tidak optimal. Penelitian ini berkontribusi pada pengembangan parameter friction stir welding untuk material polimer, khususnya melalui penerapan tool berbahan aluminium 7075 yang masih jarang dilaporkan dalam literatur dan dapat menjadi acuan untuk optimasi proses di sektor industri termoplastik.
Unduhan
Referensi
M. A. R. Pereira, A. M. Amaro, P. N. B. Reis, and A. Loureiro, “Effect of friction stir welding techniques and parameters on polymers joint efficiency—a critical review,” Polymers (Basel)., vol. 13, no. 13, 2021, doi: 10.3390/polym13132056.
T. Ge, G. S. Grest, and M. O. Robbins, “Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing,” Macromolecules, vol. 47, no. 19, pp. 6982–6989, Oct. 2014, doi: 10.1021/ma501473q.
A. Azhagar and K. Hayakawa, “Effects of Tool Surface Geometry on Temperature Distribution and Material Properties of an Aluminum Alloy in Friction Stir Welding,” Mater. Trans., vol. 61, no. 2, pp. 276–281, Feb. 2020, doi: 10.2320/matertrans.MT-ML2019017.
A. Biradar, A. Bhushan, S. Pawade, and N. P. Sherje, “Friction Stir Welding (FSW): Solid-State Joining of Composite Materials,” in Advances in Materials Processing - Recent Trends and Applications in Welding, Grinding, and Surface Treatment Processes, IntechOpen, 2024. doi: 10.5772/intechopen.1004831.
K. C. de Lira Lixandrão and F. F. Ferreira, “Polypropylene and tire powder composite for use in automotive industry,” Heliyon, vol. 5, no. 9, p. e02405, Sep. 2019, doi: 10.1016/j.heliyon.2019.e02405.
S. Sunaryo et al., “Inovasi Material Komposit Poliuretan menggunakan (ZnO:Nanoselulosa dari Serat Tandan Kosong Buah Kelapa Sawit) Sebagai Penguat Absorbsi Suara dan Insulasi Termal,” Turbo J. Progr. Stud. Tek. Mesin, vol. 12, no. 2, Dec. 2023, doi: 10.24127/trb.v12i2.2742.
M. Akbari, P. Asadi, and T. Sadowski, “A Review on Friction Stir Welding/Processing: Numerical Modeling,” Materials (Basel)., vol. 16, no. 17, p. 5890, Aug. 2023, doi: 10.3390/ma16175890.
V. Giurgiutiu, “Boeing 787 from the ground up,” in Stress, Vibration, and Wave Analysis in Aerospace Composites, Elsevier, 2022, pp. 1–27. doi: 10.1016/B978-0-12-813308-8.00006-5.
A. A. Barakat, B. M. Darras, M. A. Nazzal, and A. A. Ahmed, “A Comprehensive Technical Review of the Friction Stir Welding of Metal-to-Polymer Hybrid Structures,” Polymers (Basel)., vol. 15, no. 1, 2023, doi: 10.3390/polym15010220.
M. A. E. Omer, M. Rashad, A. H. Elsheikh, and E. A. Showaib, “A review on friction stir welding of thermoplastic materials: recent advances and progress,” Weld. World, vol. 66, no. 1, pp. 1–25, Jan. 2022, doi: 10.1007/s40194-021-01178-0.
F. R. Usman and D. S. Pamuji, “Pengaruh Variasi Putaran Tools Terhadap Kekuatan Tarik Dan Kekuatan Lengkung ( Bending ) Sambungan FSW Butt-Joint Pada Almunium Paduan,” vol. 05, no. 01, pp. 10–20, 2024.
S. H. Iftikhar, A.-H. I. Mourad, J. Sheikh-Ahmad, F. Almaskari, and S. Vincent, “A Comprehensive Review on Optimal Welding Conditions for Friction Stir Welding of Thermoplastic Polymers and Their Composites,” Polymers (Basel)., vol. 13, no. 8, p. 1208, Apr. 2021, doi: 10.3390/polym13081208.
R. K. Nath, P. Maji, and J. D. Barma, “Effect of tool rotational speed on friction stir welding of polymer using self-heated tool,” Prod. Eng., vol. 16, no. 5, pp. 683–690, Oct. 2022, doi: 10.1007/s11740-022-01123-0.
S. Sugiarto, M. Ma’arif, A. Wahjudi, and A. Ananto, “Analisis Mekanik Sambungan Dissimilar Friction Stir Welding Antara High Density Polyethylene Dengan Polypropylene,” in Seminar Nasional Tahunan Teknik Mesin XXII 2024, Depok, Indonesia: Badan Kerja Sama Teknik Mesin Indonesia, 2025, pp. 205–209. doi: 10.71452/590657.
M. H. Firmansyah and I. Iswanto, “Influence of Parameters on The Mechanical Strength of Friction Stir Welding in High Density Polyethylene,” Jul. 15, 2024. doi: 10.21070/ups.5123.
M. Balaguera, H. R. Zambrano, R. J. Chamorro Coneo, J. F. Santa Marín, and J. Unfried-Silgado, “Effect of Temperature Control and Rotational and Traverse Speeds on the Mechanical Properties of Friction Stir-Welded Polypropylene Plates,” Polymers (Basel)., vol. 16, no. 22, 2024, doi: 10.3390/polym16223110.
R. K. Nath, V. Jha, P. Maji, and J. D. Barma, “A novel double-side welding approach for friction stir welding of polypropylene plate,” Int. J. Adv. Manuf. Technol., vol. 113, no. 3–4, pp. 691–703, 2021, doi: 10.1007/s00170-021-06602-9.
K. Panneerselvam and K. Lenin, “Parameters optimization in FSW of polypropylene based on RSM,” Multidiscip. Model. Mater. Struct., vol. 11, no. 1, pp. 32–42, Jun. 2015, doi: 10.1108/MMMS-07-2013-0048.
A. Zhang and Y. Li, “Thermal Conductivity of Aluminum Alloys—A Review,” Materials (Basel)., vol. 16, no. 8, p. 2972, Apr. 2023, doi: 10.3390/ma16082972.
E. Hoyos and M. C. Serna, “Basic Tool Design Guidelines for Friction Stir Welding of Aluminum Alloys,” Metals (Basel)., vol. 11, no. 12, p. 2042, Dec. 2021, doi: 10.3390/met11122042.
M. Rezaee Hajideh, M. Farahani, S. A. D. Alavi, and N. Molla Ramezani, “Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets,” J. Manuf. Process., vol. 26, pp. 269–279, Apr. 2019, doi: 10.1016/j.jmapro.2017.02.018.
M. Al-Moussawi and A. J. Smith, “Defects in Friction Stir Welding of Steel,” Metallogr. Microstruct. Anal., vol. 7, no. 2, pp. 194–202, Apr. 2018, doi: 10.1007/s13632-018-0438-1.
R. K. Bhushan and D. Sharma, “Investigation of mechanical properties and surface roughness of friction stir welded AA6061-T651,” Int. J. Mech. Mater. Eng., vol. 15, no. 1, p. 7, Dec. 2020, doi: 10.1186/s40712-020-00119-x.
S. Eslami, P. J. Tavares, and P. M. G. P. Moreira, “Friction stir welding tooling for polymers: review and prospects,” Int. J. Adv. Manuf. Technol., vol. 89, no. 5–8, pp. 1677–1690, Mar. 2018, doi: 10.1007/s00170-016-9205-0.
Y. Huang et al., “Friction stir welding/processing of polymers and polymer matrix composites,” Compos. Part A Appl. Sci. Manuf., vol. 105, pp. 235–257, Feb. 2019, doi: 10.1016/j.compositesa.2017.12.005.
A. Zafar, M. Awang, and S. R. Khan, “Friction Stir Welding of Polymers: An Overview,” 2018, pp. 19–36. doi: 10.1007/978-981-10-4232-4_2.
B. Ahmad, F. Almaskari, J. Sheikh-Ahmad, S. Deveci, and K. Khan, “Thermomechanical Modeling of Material Flow and Weld Quality in the Friction Stir Welding of High-Density Polyethylene,” Polymers (Basel)., vol. 15, no. 15, p. 3230, Jul. 2023, doi: 10.3390/polym15153230.
S. Kilic, F. Ozturk, and M. F. Demirdogen, “A comprehensive literature review on friction stir welding: Process parameters, joint integrity, and mechanical properties,” J. Eng. Res., vol. 13, no. 1, pp. 122–130, Mar. 2025, doi: 10.1016/j.jer.2023.09.005.
D. Das, S. Bag, S. Pal, and A. Sharma, “Material Defects in Friction Stir Welding through Thermo–Mechanical Simulation: Dissimilar Materials with Tool Wear Consideration,” Materials (Basel)., vol. 16, no. 1, p. 301, Dec. 2022, doi: 10.3390/ma16010301.
S. B. A. Risky Ramadhani, Febri Budi Darsono, Aldias Bahatmaka, Kriswanto, Tegar Oki Prasdika, “Characteristics of Pin Profile Variations in Friction Stir Welding (FSW) Joints of High Density Polyethylene (HDPE) And Polypropylene (PP) on Mechanical Properties,” J. Mech. Eng. Educ., vol. 10, no. 1, pp. 128–142, 2025.
F. Lambiase, H. A. Derazkola, and A. Simchi, “Friction stirwelding and friction spot stir welding processes of polymers-state of the art,” Materials (Basel)., vol. 13, no. 10, 2020, doi: 10.3390/ma13102291.
N. Ardiyansyah et al., “Effect of Feed Rate on Shear Strength and Macrostructure of Friction Stir Welding Dissimilar High Density Polyethylene-Polypropylene Joint,” J. Polimesin, vol. 22, no. 4, p. 416, Sep. 2024, doi: 10.30811/jpl.v22i4.5285.










