Peningkatan Motivasi dan Keterlibatan Siswa melalui Pembelajaran Berbasis Embodied Learning pada Materi Internet of Things (IoT)
DOI:
https://doi.org/10.52436/1.jpti.473Keywords:
Education Technology, Embodied Learning, Internet of Things, Student Motivation, Student EngagmentAbstract
Internet of Things (IoT) dalam pendidikan vokasi menawarkan peluang besar untuk mengembangkan keterampilan praktis siswa yang relevan dengan dunia industri. Namun, tantangan utama terletak pada keterbatasan pendekatan pembelajaran berbasis teknologi dalam mempertahankan minat dan keterlibatan siswa. Pendekatan embodied learning, yang mengintegrasikan pengalaman sensorimotor melalui gerakan fisik, telah terbukti meningkatkan keterlibatan dan motivasi siswa dalam berbagai disiplin ilmu. Namun, penerapannya dalam konteks IoT masih menghadapi hambatan, mengingat kompleksitas teknologi yang terlibat. Penelitian ini bertujuan untuk mengeksplorasi penerapan embodied learning dalam pembelajaran IoT, serta untuk menguji dampaknya terhadap motivasi dan keterlibatan siswa. Desain penelitian menggunakan pendekatan kuantitatif dengan eksperimen, di mana partisipan dibagi menjadi kelompok eksperimen yang menggunakan model embodied learning dan kelompok kontrol dengan metode pembelajaran konvensional. Hasil penelitian yang menunjukkan pengaruh signifikan Embodied Learning terhadap motivasi belajar siswa (Path Coefficient = 0.904, T-Statistics = 49.283, dan P-Value = 0.000) mengindikasikan bahwa pendekatan ini memainkan peran penting dalam konteks pendidikan dan Hasil penelitian yang menunjukkan pengaruh signifikan Embodied Learning terhadap Engagement Learning (Path Coefficient = 0.920, T-Statistics = 43.985, dan P-Value = 0.000) memberikan bukti kuat bahwa metode pembelajaran ini tidak hanya meningkatkan motivasi, Temuan ini menunjukkan bahwa penerapan embodied learning dalam pembelajaran IoT secara signifikan meningkatkan motivasi dan keterlibatan siswa dibandingkan dengan metode pembelajaran tradisional.
Downloads
References
W. A. J. W. Yahaya, R. Restu, and S. Sriadhi, “Multimedia-based Information System for Technology and Vocational Education Laboratory,” Prof. la Inf., vol. 33, no. 1, Mar. 2024, doi: 10.3145/epi.2024.0012.
F. Han, “An empirical study on the innovation of vocational education technology to construct a new classroom teaching mode in the context of new media,” Appl. Math. Nonlinear Sci., vol. 9, no. 1, Jan. 2024, doi: 10.2478/amns-2024-0066.
X. Wang, “The application of new media communication technology in vocational education teaching under the background of big data,” Appl. Math. Nonlinear Sci., vol. 9, no. 1, Sep. 2023, doi: 10.2478/amns.2023.2.00295.
L. Gutierrez-Bucheli et al., “Adopting immersive technologies in construction training: determining educational decision-making criteria through a Delphi technique,” Smart Sustain. Built Environ., Feb. 2024, doi: 10.1108/sasbe-08-2023-0202.
A. Habibi, S. Sofyan, and A. Mukminin, “Factors affecting digital technology access in vocational education,” Sci. Rep., vol. 13, no. 1, Apr. 2023, doi: 10.1038/s41598-023-32755-6.
A. Awouda, E. Traini, M. Asranov, and P. Chiabert, “Bloom’s IoT Taxonomy towards an effective Industry 4.0 education: Case study on Open-source IoT laboratory,” Educ. Inf. Technol., Jan. 2024, doi: 10.1007/s10639-024-12468-7.
R. M. Assumpção, P. R. Chaves, L. C. Ferreira, P. Cardieri, O. C. Branquinho, and F. Fruett, “Advancing engineering education: Using the three?phase methodology to teach IoT,” Comput. Appl. Eng. Educ., vol. 30, no. 5, pp. 1547–1560, Jun. 2022, doi: 10.1002/cae.22543.
J. Ning, G. Zhi, and Z. Sun, “Research on Digital Transformation of Vocational Education in the Era of Big Data,” Appl. Math. Nonlinear Sci., vol. 9, no. 1, Jan. 2024, doi: 10.2478/amns-2024-0177.
J. Meira et al., “Industrial Internet of Things over 5G: A Practical Implementation,” Sensors, vol. 23, no. 11, p. 5199, May 2023, doi: 10.3390/s23115199.
A.-J. Pan, Y.-C. Huang, and C.-F. Lai, “Constructing hands-on distance labs: the development and implementation of an Intelligent Learning Management System (ILMS-d) in undergraduate IoT courses,” Interact. Learn. Environ., pp. 1–17, Oct. 2023, doi: 10.1080/10494820.2023.2263061.
K. S. Awaisi, Q. Ye, and S. Sampalli, “A Survey of Industrial AIoT: Opportunities, Challenges, and Directions,” IEEE Access, vol. 12, pp. 96946–96996, 2024, doi: 10.1109/access.2024.3426279.
S. Shereef and N. Varghese, “‘ED-IOT’: SCOPE, APPLICATION AND CHALLENGES, OF THE INTERNET OF THINGS IN EFFECTIVE EDUCATION,” in Futuristic Trends in Artificial Intelligence Volume 3 Book 2, Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024, pp. 139–160. doi: 10.58532/v3bdai2p2ch8.
A. K. Mohanty, V. N. C., S. Ahamed, R. Kamra, and A. A. Junnarkar, “Challenges and Future Prospects of IoT and AI Integration in Education,” in Progress in Language, Literature and Education Research Vol. 1, B P International (a part of SCIENCEDOMAIN International), 2023, pp. 94–105. doi: 10.9734/bpi/pller/v1/6503c.
M. A. Said, “CHALLENGES WITH INTERNET OF THINGS (IOT) SECURITY,” TMP Univers. J. Res. Rev. Arch., vol. 3, no. 1, Mar. 2024, doi: 10.69557/ujrra.v3i1.66.
K. Xing and L. Pan, “Research on the Reform of Practical Teaching of Internet of Things Engineering in the Context of New Engineering,” J. Electron. Res. Appl., vol. 8, no. 2, pp. 74–78, Mar. 2024, doi: 10.26689/jera.v8i2.6291.
V. H. Nguyen, R. Halpin, and A. R. Joy?Thomas, “Guided inquiry?based learning to enhance student engagement, confidence, and learning,” J. Dent. Educ., vol. 88, no. 8, pp. 1040–1047, Mar. 2024, doi: 10.1002/jdd.13531.
M. Mari?i? and Z. Lavicza, “Enhancing student engagement through emerging technology integration in STEAM learning environments,” Educ. Inf. Technol., May 2024, doi: 10.1007/s10639-024-12710-2.
E. Elfina, W. Waskito, R. Darni, H. Maksum, and D. Novaliendry, “Revolutionary Flipbook-Based Digital Comic: Changing Student Engagement in Learning,” JTP - J. Teknol. Pendidik., vol. 25, no. 3, pp. 514–527, May 2024, doi: 10.21009/jtp.v25i3.44809.
& Naz, Dr. Nargis and V. Rani, “Evaluating the Effectiveness of Technology-Based E-Learning on Academic Performance in Secondary Schools: A Case Study of Gaya District,” Int. J. Multidiscip. Res., vol. 6, no. 2, Apr. 2024, doi: 10.36948/ijfmr.2024.v06i02.16002.
I. Maryani and Y. M. Puspitasari, “The Impact of Technology Readiness on Undergraduate Students’ Acceptance of Learning Management System,” J. Educ. Technol., vol. 8, no. 1, pp. 22–30, Apr. 2024, doi: 10.23887/jet.v8i1.51989.
J. Galaige and G. Torrisi-Steele, “Unpacking the ‘Learning’’ in Student-Facing Analytics: Metacognition and the Zone of Proximal Development’,” Int. J. Adult Vocat. Educ. Technol., vol. 10, no. 1, pp. 1–12, Jan. 2019, doi: 10.4018/ijavet.2019010101.
K. M. Elliott, M. C. Hall, and J. (Gloria) Meng, “Student Technology Readiness And Its Impact On Cultural Competency,” Coll. Teach. Methods & Styles J., vol. 4, no. 6, pp. 11–22, Jun. 2008, doi: 10.19030/ctms.v4i6.5555.
C. Angeli, “The Impact of a Project-Based Learning Environment on the Development of Undergraduate Students’ Digital Literacy Skills,” in Proceedings of the 2024 AERA Annual Meeting, 2024. doi: 10.3102/2107845.
M. Alajmi, “Technology and their negative impact on students,” Tech. Soc. Sci. J., vol. 30, pp. 94–98, Apr. 2022, doi: 10.47577/tssj.v30i1.6178.
A. D. X. Qizi, “AN INTEGRATIVE APPROACH TO TEACHING ENGLISH: ENHANCING LANGUAGE LEARNING THROUGH MULTIDIMENSIONAL INSTRUCTION,” Int. J. Adv. Sci. Res., vol. 4, no. 5, pp. 87–89, May 2024, doi: 10.37547/ijasr-04-05-18.
Y. Wang, “The Application of Contextual Integration in English Language Learning,” Educ. Reform Dev., vol. 6, no. 3, pp. 118–122, Mar. 2024, doi: 10.26689/erd.v6i3.6620.
M. D. COROI, “The approach of learning content through technology,” in Materialele conferin?ei ?tiin?ifice na?ionale cu participare interna?ional? «Probleme ale ?tiin?elor socioumanistice ?i ale moderniz?rii înv???mântului», Dec. 2022, pp. 252–258. doi: 10.46728/c.v2.25-03-2022.p252-258.
B. E. Saputra, “Context need teaching approach,” Teach. Theol. & Relig., vol. 26, no. 4, pp. 160–162, Nov. 2023, doi: 10.1111/teth.12648.
?. ?. ?????????, ?. ?. ????????, ?. ?. ???????, and ?. ?. ??????????, “Contextual Approach in Teaching a Foreign Language as a Basis for Integration Processes in Vocational Education,” ????????? ?????????????? ??????, no. 2(159), May 2023, doi: 10.51379/kpj.2023.159.2.016.
K. Y. Fung, L. H. Lee, K. F. Sin, S. Song, and H. Qu, “Correction: Humanoid robot-empowered language learning based on self-determination theory,” Educ. Inf. Technol., Sep. 2024, doi: 10.1007/s10639-024-13054-7.
W. Li, F. Wang, and R. E. Mayer, “Increasing the realism of on?screen embodied instructors creates more looking but less learning,” Br. J. Educ. Psychol., vol. 94, no. 3, pp. 759–776, Mar. 2024, doi: 10.1111/bjep.12677.
I. Aartun, K. Lambert, and K. Walseth, “How pupils’ playfulness creates possibilities for pleasure and learning in physical education,” Phys. Educ. Sport Pedagog., pp. 1–18, Jul. 2023, doi: 10.1080/17408989.2023.2235372.
J. C. Castro-Alonso, P. Ayres, S. Zhang, B. B. de Koning, and F. Paas, “Research Avenues Supporting Embodied Cognition in Learning and Instruction,” Educ. Psychol. Rev., vol. 36, no. 1, Jan. 2024, doi: 10.1007/s10648-024-09847-4.
A. Bertin?Renoux, “Embodied and Enactive Creativity: Moving Beyond the Mind–Body Dichotomy in School Education,” J. Creat. Behav., Apr. 2024, doi: 10.1002/jocb.651.
S.-M. Korte and M. Körkkö, “Conceptualising technology-enhanced embodied pedagogy,” in Embodied Learning and Teaching using the 4E Cognition Approach, Routledge, 2024, pp. 115–125. doi: 10.4324/9781003341604-17.
B. Zhong, S. Su, X. Liu, and Z. Zhan, “A literature review on the empirical studies of technology-based embodied learning,” Interact. Learn. Environ., vol. 31, no. 8, pp. 5180–5199, Nov. 2021, doi: 10.1080/10494820.2021.1999274.
A. Artifice, J. Sarraipa, F. Ferreira, and R. Jardim-Goncalves, “Attention-Aware Pedagogical Agent for Smart Book Reading,” in Proceedings of the 10th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, Aug. 2022, pp. 129–134. doi: 10.1145/3563137.3563175.
L. Gómez-Coma, G. Díaz-Sainz, M. Fallanza, A. Ortiz, and I. Ortiz, “Integration of chemical engineering skills in the curriculum of a master course in industrial engineering,” Educ. Chem. Eng., vol. 45, pp. 68–79, Oct. 2023, doi: 10.1016/j.ece.2023.08.002.
F. Cassola et al., “Design and Evaluation of a Choreography-Based Virtual Reality Authoring Tool for Experiential Learning in Industrial Training,” IEEE Trans. Learn. Technol., vol. 15, no. 5, pp. 526–539, Oct. 2022, doi: 10.1109/tlt.2022.3157065.
M. M. Kamruzzaman et al., “AI- and IoT-Assisted Sustainable Education Systems during Pandemics, such as COVID-19, for Smart Cities,” Sustainability, vol. 15, no. 10, p. 8354, May 2023, doi: 10.3390/su15108354.
W. Deng, X. Guo, W. Cheng, and W. Zhang, “Embodied design: A framework for teaching practices focused on the early development of computational thinking,” Comput. Appl. Eng. Educ., vol. 31, no. 2, pp. 365–375, Dec. 2022, doi: 10.1002/cae.22588.
Z. Dai, Q. Zhang, X. Zhu, and L. Zhao, “A Comparative Study of Chinese and Foreign Research on the Internet of Things in Education: Bibliometric Analysis and Visualization,” IEEE Access, vol. 9, pp. 130127–130140, 2021, doi: 10.1109/access.2021.3113805.
B. Tabuenca et al., “Greening smart learning environments with Artificial Intelligence of Things,” Internet of Things, vol. 25, p. 101051, Apr. 2024, doi: 10.1016/j.iot.2023.101051.
E. S. Soegoto et al., “A systematic Literature Review of Internet of Things for Higher Education: Architecture and Implementation,” Indones. J. Sci. Technol., vol. 7, no. 3, pp. 511–528, Oct. 2022, doi: 10.17509/ijost.v7i3.51464.
Z. Jamilah, M. Nuruddin, and C. Z. Susilo, “The Demonstration Method Effectiveness on Student’s Learning Liveliness in Chapter 7 Topic B Grade IV,” IJPSE Indones. J. Prim. Sci. Educ., vol. 4, no. 2, pp. 179–186, Apr. 2024, doi: 10.33752/ijpse.v4i2.4184.
S. Sundari and S. Utami, “Inquiry Learning Methods to Increase Student Motivation and Learning Outcomes,” J. Pendidik. Kedokt. Indones. Indones. J. Med. Educ., vol. 13, no. 2, p. 91, Jun. 2024, doi: 10.22146/jpki.80754.
E. ÖZGÜL and M. A. OCAK, “The effect of internet of things education through distance education on student success and motivation,” J. Educ. Technol. Online Learn., vol. 6, no. 2, pp. 403–420, May 2023, doi: 10.31681/jetol.1241362.
S. Syafruddin, I. Agustina, J. Jemmy, K. Komari, and T. A. Santosa, “Effectiveness of IoT-Based Flipped Classroom Model on Students’ Critical Thinking Skills: A Meta-Analysis,” J. Penelit. Pendidik. IPA, vol. 9, no. 10, pp. 883–891, Oct. 2023, doi: 10.29303/jppipa.v9i10.5265.
J. Muñoz Laguna et al., “Is blinding in studies of manual soft tissue mobilisation of the back possible? A feasibility randomised controlled trial with Swiss graduate students,” Chiropr. & Man. Ther., vol. 32, no. 1, Jan. 2024, doi: 10.1186/s12998-023-00524-x.
Y. Moon, A. Bishnoi, R. Sun, J. C. Shin, and J. J. Sosnoff, “Preliminary investigation of teaching older adults the tuck-and-roll strategy: Can older adults learn to fall with reduced impact severity,” J. Biomech., vol. 83, pp. 291–297, Jan. 2019, doi: 10.1016/j.jbiomech.2018.12.002.
Y. Dai, Z. Lin, A. Liu, and W. Wang, “An embodied, analogical and disruptive approach of AI pedagogy in upper elementary education: An experimental study,” Br. J. Educ. Technol., vol. 55, no. 1, pp. 417–434, Aug. 2023, doi: 10.1111/bjet.13371.
X. Xu and F. Ke, “Learning Number Conversions Through Embodied Interactions,” Technol. Knowl. Learn., Aug. 2021, doi: 10.1007/s10758-021-09557-8.
S. Malik, “Data-Driven Decision-Making: Leveraging the IoT for Real-Time Sustainability in Organizational Behavior,” Sustainability, vol. 16, no. 15, p. 6302, Jul. 2024, doi: 10.3390/su16156302.
D. Glaroudis, A. Iossifides, N. Spyropoulou, I. D. Zaharakis, and A. D. Kameas, “STEM Learning and Career Orientation via IoT Hands-on Activities in Secondary Education,” in 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Mar. 2019, pp. 480–485. doi: 10.1109/percomw.2019.8730759.
J.-H. Wang, M. Liyanawatta, C.-Y. Lee, Y.-L. Huang, S.-H. Yang, and G.-D. Chen, “Embodied Learning Through Drama-Based Situatedness Using Immersive Technology in the Classroom,” in 2023 IEEE International Conference on Advanced Learning Technologies (ICALT), Jul. 2023, pp. 274–276. doi: 10.1109/icalt58122.2023.00086.
M. Djunaidi and R. D. Gunari, “Analysis of Factors Affecting Consumer Satisfaction Using SEM (Structural Equation Modeling) Method,” Opsi, vol. 15, no. 1, p. 85, 2022, doi: 10.31315/opsi.v15i1.6808.
V. Silaparasetti, G. V. R. Srinivasarao, and F. R. Khan, “STRUCTURAL EQUATION MODELING ANALYSIS USING SMART PLS TO ASSESS THE OCCUPATIONAL HEALTH AND SAFETY (OHS) FACTORS ON WORKERS’BEHAVIOR,” Humanit. & Soc. Sci. Rev., vol. 5, no. 2, pp. 88–97, 2017, doi: 10.18510/hssr.2017.524.
A. Kirana W and U. Usran, “PENGARUH TINGKAT PEMAHAMAN PAJAK DAN SANKSI PAJAK TERHADAP KEPATUHAN WAJIB PAJAK DI KABUPATEN TAKALAR,” AkMen J. Ilm., vol. 18, no. 1, pp. 110–122, 2021, doi: 10.37476/akmen.v18i1.1386.
A. R. de Oliveira et al., “APRENDIZAGEM CINÉTICA: INTEGRANDO MOVIMENTO NA SALA DE AULA,” Rev. ft, pp. 01–02, Jul. 2024, doi: 10.69849/revistaft/fa10202407311501.
N. Chettaoui, A. Atia, and M. S. Bouhlel, “Exploring the Impact of Multimodal Adaptive Learning with Tangible Interaction on Learning Motivation,” in 2020 15th International Conference on Computer Engineering and Systems (ICCES), Dec. 2020, pp. 1–6. doi: 10.1109/icces51560.2020.9334588.
A. Vrins, E. Pruss, J. Prinsen, C. Ceccato, and M. Alimardani, “Are You Paying Attention? The Effect of Embodied Interaction with an Adaptive Robot Tutor on User Engagement and Learning Performance,” in Social Robotics, Springer Nature Switzerland, 2022, pp. 135–145. doi: 10.1007/978-3-031-24670-8_13.
M. J. Nathan, Foundations of Embodied Learning: A Paradigm for Education. Routledge, 2021. doi: 10.4324/9780429329098.
D. Birchfield et al., “Embodied and mediated learning in SMALLab: a student-centered mixed-reality environment,” in ACM SIGGRAPH 2009 Emerging Technologies, Aug. 2009, pp. 1–1. doi: 10.1145/1597956.1597965.
N. Chettaoui, A. Atia, and M. S. Bouhlel, “Exploring the Impact of Interaction Modality on Students’ Learning Performance,” J. Educ. Comput. Res., vol. 60, no. 1, pp. 4–27, Jun. 2021, doi: 10.1177/07356331211027297.
F. A. Ganotice et al., “Applying motivational framework in medical education: a self-determination theory perspectives,” Med. Educ. Online, vol. 28, no. 1, 2023, doi: 10.1080/10872981.2023.2178873.
L. Smyth, J. Carter, K. Valter, and A. L. Webb, “Examining the Short?, Medium?, and Long?Term Success of an Embodied Learning Activity in the Study of Hand Anatomy for Clinical Application,” Anat. Sci. Educ., vol. 14, no. 2, pp. 201–209, Jul. 2020, doi: 10.1002/ase.1987.
B. Klimova and R. Dostalova, “The Impact of Physical Activities on Cognitive Performance among Healthy Older Individuals,” Brain Sci., vol. 10, no. 6, p. 377, Jun. 2020, doi: 10.3390/brainsci10060377.
B. Dwojaczny and M. Bejtka, “Influence of physical activity on cognitive functions - Potential mechanisms and benefits,” J. Educ. Heal. Sport, vol. 13, no. 3, pp. 181–185, Feb. 2023, doi: 10.12775/jehs.2023.13.03.026.