Optimasi Model Data Warehouse Menggunakan Skema Bintang untuk Mendukung Analisis Multidimensi Kredit Usaha Rakyat Syariah
DOI:
https://doi.org/10.52436/1.jpti.1405Keywords:
Analisis Multidimensi, Big Data, Data Warehouse, ETL, Kredit Usaha Rakyat Syariah, Star SchemaAbstract
Sistem Informasi Kredit Program (SIKP) pada akhir 2024 menanggung beban 592.294 data debitur dan 1.220.833 data akad Kredit Usaha Rakyat (KUR) Syariah. Beban ini menurunkan performa query (kueri), menghambat kebutuhan rekapitulasi mendesak, dan menimbulkan inkonsistensi karena ekstraksi manual tanpa timestamp (penanda waktu). Penelitian ini bertujuan mengoptimasi model data warehouse berbasis star schema (skema bintang) agar kinerja kueri meningkat, kualitas data terjaga, dan tersedianya analisis multidimensi untuk pemantauan kinerja pembiayaan serta penilaian risiko. Perancangan dilakukan dengan satu tabel fakta utama beserta dimensi waktu, wilayah, jenis pembiayaan, dan kategori debitur. Data historis diproses melalui ETL (Extract, Transform, Load) sebelum dianalisis dengan OLAP (Pemrosesan Analitik Daring) guna mendukung agregasi lintas hierarki. Ruang lingkup pengujian mencakup kueri rekapitulasi agregat menurut waktu, wilayah, jenis pembiayaan, dan kategori debitur dengan menggunakan data historis SIKP tahun 2023 dan 2024. Pengujian menunjukkan percepatan eksekusi kueri hingga 85% dibandingkan skema operasional awal, disertai peningkatan konsistensi pelaporan dan sifat yang fleksibel untuk pemutaran perspektif analitis. Secara praktis, rancangan ini menyediakan pelaporan strategis yang cepat tanpa mengorbankan kestabilan operasional penerimaan transaksi SIKP. Secara teoretis, hasilnya menguatkan posisi star schema sebagai arsitektur yang relevan untuk big data dan analitik keuangan syariah.
Downloads
References
W. Wijaya, J. Wiratama, and S. F. Wijaya, “Implementation of Data Warehouse and Star Schema for Optimizing Property Business Decision Making,” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 2, pp. 1242–1250, Apr. 2024, doi: 10.33379/gtech.v8i2.4091.
D. Tan, J. Wiratama, and S. Fernandi Wijaya, “Sales Analysis on Garment Industry with Datawarehouse and ETL Implementation on Star Schema,” Indonesian Journal of Computer Science, vol. 13, no. 1, Feb. 2024, doi: 10.33022/ijcs.v13i1.3770.
D. Nurmalasari, M. S. Zulvi, and P. Hanifah, “Performance Analysis Of Star Schema Data Modeling On Library Data,” Jurnal Komputer Terapan, vol. 5, no. 2, pp. 44–53, Nov. 2019, doi: 10.35143/jkt.v5i2.3341.
A. Yulianto, “Optimalisasi Performa Data Warehouse dengan Data Mart,” Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 8, no. 4, 2024, doi: http://doi.org/10.33395/remik.v8i4.14152.
S. Bimonte, E. Gallinucci, P. Marcel, and S. Rizzi, “Logical design of multi-model data warehouses,” Knowl Inf Syst, vol. 65, no. 3, pp. 1067–1103, Mar. 2023, doi: 10.1007/s10115-022-01788-0.
M. Z. Kastouni and A. Ait Lahcen, “Big data analytics in telecommunications: Governance, architecture and use cases,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 2758–2770, Jun. 2022, doi: 10.1016/j.jksuci.2020.11.024.
S. Al-Yadumi, T. E. Xion, S. G. W. Wei, and P. Boursier, “Review on Integrating Geospatial Big Datasets and Open Research Issues,” IEEE Access, vol. 9, pp. 10604–10620, 2021, doi: 10.1109/ACCESS.2021.3051084.
S. Murri, “Optimising Data Modeling Approaches for Scalable Data Warehousing Systems,” Int J Sci Res Sci Eng Technol, pp. 369–382, Oct. 2023, doi: 10.32628/IJSRSET2358716.
D. Seenivasan, “Data Cube Management and Performance Tuning in Essbase-Driven Multidimensional Data Warehouses,” SSRN Electronic Journal, 2025, doi: 10.2139/ssrn.5148217.
R. Benhissen, F. Bentayeb, and O. Boussaid, “Temporal Multidimensional Model for Evolving Graph-Based Data Warehouses,” in Proceedings of the 12th International Conference on Data Science, Technology and Applications, SCITEPRESS - Science and Technology Publications, 2023, pp. 40–51. doi: 10.5220/0012080400003541.
G. Turcan and S. Peker, “A multidimensional data warehouse design to combat the health pandemics,” Journal of Data, Information and Management, vol. 4, no. 3–4, pp. 371–386, Dec. 2022, doi: 10.1007/s42488-022-00082-6.
L. Yessad and A. Labiod, “Comparative study of data warehouses modeling approaches: Inmon, Kimball and Data Vault,” in 2016 International Conference on System Reliability and Science, ICSRS 2016 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Jan. 2017, pp. 95–99. doi: 10.1109/ICSRS.2016.7815845.
M. Qusyairi and A. Dharma, “Design and Build Data Warehouse Using Ontology and Rule Base Method in Supporting Sales and Service Information,” International Journal of Engineering and Emerging Technology, vol. 5, no. 2, doi: https://doi.org/10.24843/IJEET.2020.v05.i02.p011.
P. Metkewar, “Optimized Data Warehouse model through Pentaho ETL Tool,” 2013. [Online]. Available: https://www.researchgate.net/publication/290429160
S. M. F. Ali and R. Wrembel, “From conceptual design to performance optimization of ETL workflows: current state of research and open problems,” VLDB Journal, vol. 26, no. 6, pp. 777–801, Dec. 2017, doi: 10.1007/s00778-017-0477-2.
M. M Kirmani, “Dimensional Modeling Using Star Schema for Data Warehouse Creation,” Oriental journal of computer science and technology, vol. 10, no. 04, pp. 745–754, Dec. 2017, doi: 10.13005/ojcst/10.04.07.
E. Sidi, M. El, and E. Amin, “Star Schema Advantages on Data Warehouse: Using Bitmap Index and Partitioned Fact Tables,” Int J Comput Appl, vol. 134, no. 13, pp. 11–13, Jan. 2016, doi: 10.5120/ijca2016908108.
I. Kovacic, C. G. Schuetz, B. Neumayr, and M. Schrefl, “OLAP Patterns: A pattern-based approach to multidimensional data analysis,” Data Knowl Eng, vol. 138, Mar. 2022, doi: 10.1016/j.datak.2021.101948.
A. D. Barahama and R. Wardani, “Data analysis and data warehouse design based on Pentaho data integration (kettle) to support the determination of student learning achievement,” IOP Conf Ser Mater Sci Eng, vol. 1098, no. 5, p. 052089, Mar. 2021, doi: 10.1088/1757-899x/1098/5/052089.










