Pengaruh Prediksi Kredit bermasalah Terhadap Keputusan Bank Dengan Komparasi Metode ANN, CNN, dan Random Forest

Authors

  • Gupita Nurmalitasari Universitas Amikom Purwokerto, Indonesia
  • Rujianto Eko Saputro Universitas Amikom Purwokerto, Indonesia
  • Giat Karyono Universitas Amikom Purwokerto, Indonesia

DOI:

https://doi.org/10.52436/1.jpti.1276

Keywords:

ANN, CNN, Kebijakan, kredit bermasalah, random forest

Abstract

Kredit bermasalah menjadi salah satu tantangan utama sektor perbankan karena dapat mengganggu stabilitas keuangan dan mempengaruhi keputusan strategis. Oleh karena itu, kemampuan memprediksi potensi kredit bermasalah secara akurat sangat penting dalam pengelolaan risiko. Penelitian ini membandingkan kinerja tiga algoritma kecerdasan buatan ANN (Artificial Neural Network) dengan arsitektur MLP (Multilayer Perceptron), CNN  (Convolutional Neural Network), dan RF (Random Forest) untuk klasifikasi risiko kredit berdasarkan data nominatif kredit.Dataset mencakup fitur-fitur utama seperti plafon pinjaman, jangka waktu, penghasilan, baki debet, kolektibilitas dan total tunggakan. Data diklasifikasikan dalam lima kategori risiko berdasarkan status pembayaran antara lain L (Lancar), DP (Dalam Perhatian), KL (Kurang Lancar), D (Diragukan), dan M (Macet). Setiap model dievaluasi berdasarkan akurasi keseluruhan dan kemampuannya mengidentifikasi kelas minoritas dan mayoritas.Hasil menunjukkan bahwa Random Forest unggul dengan akurasi 91,42%, efektif dalam mengklasifikasikan kategori “Lancar” dan “Macet”. Model ANN MLP mencapai akurasi 89,90%, namun kurang optimal untuk kelas minoritas. Sementara CNN hanya mencatat akurasi 58,58% dan mengalami overfitting terhadap kelas mayoritas.Studi ini menyimpulkan bahwa Random Forest adalah metode paling tepat untuk data tabular yang seimbang, sementara CNN memiliki potensi dalam konteks data spasial atau sekuensial. Dan hasil yang akurat dari prediksi Random forest diharapkan dapat menjadi pertimbangan bagi lembaga keuangan dalam pengambilan keputusan terkait kebijakan di bank Pemerintah di Purbalingga.

Downloads

Download data is not yet available.

References

L. J. Sinay, S. J. Latupeirissa, S. M. Pelu, and M. I. Tilukay, “the Impact of Bank-Specific Factors on Non-Performing Loan in Indonesia: Evidence From Ardl Model Approach,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 2, pp. 675–686, 2022, doi: 10.30598/barekengvol16iss2pp675-686.

D. Zahra Yuniar, E. Suherman, D. Epty, U. Buana, and P. Karawang, “Analisis Non Performing Loan pada PT Bank BRI tbk Info Artikel ABSTRAK Sejarah artikel,” J. Ilm. Akunt. dan Keuang., vol. 5, no. 5, p. 2022, 2022, [Online]. Available: www.idx.co.id

N. Shonhadji, “What Most Influence on Non-Performing Loan in Indonesia? Bank Accounting Perspective with MARS Analysis,” J. Account. Strateg. Financ., vol. 3, no. 2, pp. 136–153, 2020, doi: 10.33005/jasf.v3i2.85.

S. I. Serengil, S. Imece, U. G. Tosun, E. B. Buyukbas, and B. Koroglu, “A Comparative Study of Machine Learning Approaches for Non Performing Loan Prediction with Explainability,” Int. J. Mach. Learn. Comput., vol. 12, no. 5, 2022, doi: 10.18178/ijmlc.2022.12.5.1102.

E. Ismanto and M. Novalia, “Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas Performance Comparison Between C4.5 Algorithm, Random Forests, and Gradient Boosting for Commodity Classification,” Techno.COM, vol. 20, no. 3, pp. 400–410, 2021.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.

Y. Hu and J. Su, “Research on Credit Risk Evaluation of Commercial Banks Based on Artificial Neural Network Model,” Procedia Comput. Sci., vol. 199, pp. 1168–1176, 2021, doi: 10.1016/j.procs.2022.01.148.

P. Rahmawati, A. Larasati, and M. Marsono, “Pengembangan Model Persetujuan Kredit Nasabah Bank Dengan Algoritma Klasifikasi Naïve Bayes, Decision Tree, Dan Artificial Neural Network,” J@ti Undip J. Tek. Ind., vol. 17, no. 1, pp. 1–12, 2022, doi: 10.14710/jati.1.1.1-12.

J. Li, C. Xu, B. Feng, and H. Zhao, “Credit Risk Prediction Model for Listed Companies Based on CNN-LSTM and Attention Mechanism,” Electron., vol. 12, no. 7, pp. 1–18, 2023, doi: 10.3390/electronics12071643.

B. Feng, W. Xue, B. Xue, and Z. Liu, “Every Corporation Owns Its Image: Corporate Credit Ratings via Convolutional Neural Networks,” 2020 IEEE 6th Int. Conf. Comput. Commun. ICCC 2020, pp. 1578–1583, 2020, doi: 10.1109/ICCC51575.2020.9344973.

J. Ye, Z. Zhao, E. Ghafourian, A. R. Tajally, H. A. Alkhazaleh, and S. Lee, “Optimizing the topology of convolutional neural network (CNN) and artificial neural network (ANN) for brain tumor diagnosis (BTD) through MRIs,” Heliyon, vol. 10, no. 16, p. e35083, 2024, doi: 10.1016/j.heliyon.2024.e35083.

A. Bitetto, P. Cerchiello, S. Filomeni, A. Tanda, and B. Tarantino, “Machine learning and credit risk: Empirical evidence from small- and mid-sized businesses,” Socioecon. Plann. Sci., vol. 90, no. October, p. 101746, 2023, doi: 10.1016/j.seps.2023.101746.

B. Aji Santoso and A. Dwi Hartanto, “Comparison of Accuracy Levels of Random Forest and K-Nearest Neighbor (Knn) Algorithms for Classifying Smooth Bank Credit Payments,” J. Tek. Inform., vol. 5, no. 1, pp. 77–87, 2024, [Online]. Available: https://doi.org/10.52436/1.jutif.2024.5.1.1195

Y. Wang, Y. Zhang, Y. Lu, and X. Yu, “A Comparative Assessment of Credit Risk Model Based on Machine Learning ——a case study of bank loan data,” Procedia Comput. Sci., vol. 174, pp. 141–149, 2020, doi: 10.1016/j.procs.2020.06.069.

I. Emmanuel, Y. Sun, and Z. Wang, “A machine learning-based credit risk prediction engine system using a stacked classifier and a filter-based feature selection method,” J. Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-00882-0.

R. Bhandary and B. Ghosh, “Credit Card Default Prediction: An Empirical Analysis on Prediction Performance Between Statistical and Machine Learning Methods,” vol. 2005, 2024, [Online]. Available: www.preprints.org

Bhavya Pratap Singh, “Python and Its Future Scope,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 2, no. 5, pp. 400–403, 2022, doi: 10.48175/ijarsct-4829.

Published

2026-01-13

How to Cite

Nurmalitasari, G., Eko Saputro, R., & Karyono, G. (2026). Pengaruh Prediksi Kredit bermasalah Terhadap Keputusan Bank Dengan Komparasi Metode ANN, CNN, dan Random Forest. Jurnal Pendidikan Dan Teknologi Indonesia, 5(12), 3702-3710. https://doi.org/10.52436/1.jpti.1276