Implementasi Metode ViSQOL Dalam Mengidentifikasi Noise pada Kualitas Suara Streaming Spotify
DOI:
https://doi.org/10.52436/1.jpti.848Kata Kunci:
Kualitas Suara, Mean Opinion Score, Parameter Jaringan, ViSQOLAbstrak
Kualitas suara pada layanan streaming Spotify seringkali tidak konsisten akibat gangguan noise dan variasi parameter jaringan, yang berdampak pada kualitas pengalaman pengguna (QoE). Penelitian ini bertujuan mengevaluasi kualitas audio Spotify menggunakan algoritma ViSQOL dengan menganalisis pengaruh jenis noise seperti pink noise, background noise, compression noise, dan impulse noise. Network noise juga diuji berdasarkan parameter jaringan yaitu throughput, delay, packet loss, dan jitter. Sebanyak 800 sampel audio direkam menggunakan Audacity dan dianalisis di MATLAB untuk memperoleh nilai Mean Opinion Score (MOS), Signal-to-Noise Ratio (SNR), dan Spectral Distortion. Hasil menunjukkan bahwa pink noise 50% menurunkan MOS menjadi 61–65%, sementara impulse noise memberikan dampak paling signifikan dengan MOS 15–17%. Background noise masih dapat ditoleransi. Pada parameter jaringan, MOS tertinggi diangka 4.31 terjadi pada delay 132.16 ms dan packet loss 0.49%, sedangkan MOS terendah diangka 4.26 tercatat saat delay 62.15 ms dan packet loss 1.9%. Temuan ini menegaskan pentingnya pengendalian terhadap noise dan stabilitas jaringan untuk menjaga kualitas layanan audio.
Unduhan
Referensi
G. Azzahira, P. Zakaria, T. Pradekso, and L. R. Rahmiaji, “the Influence of Price Perception , Advertising Perception , Audio Quality Perception , Music Download Perception , and Unlimited Skip Perception on the Decision To Use Spotify Premium Application,” J. Ilm. Univ. Diponegoro, 2023, [Online]. Available: https://ejournal3.undip.ac.id/index.php/interaksi-online/article/view/45288/31465
M. R. dos Santos, A. P. Batista, R. L. Rosa, M. Saadi, D. C. Melgarejo, and D. Z. Rodríguez, “AsQM: Audio Streaming Quality Metric Based on Network Impairments and User Preferences,” IEEE Trans. Consum. Electron., vol. 69, no. 3, pp. 408–420, 2023, doi: 10.1109/TCE.2023.3255411.
F. P. E. Putra, M. Aziz, G. Arifin, A. Rohman, A. Rizki, and A. M. Syam, “Analisis Kualitas Jaringan Integratif Quality of Service (QoS) dan Quality of Experience (QoE) pada Layanan Multimedia di jaringan 5G,” semanTIK, vol. 10, no. 1, p. 175, 2024, doi: 10.55679/semantik.v10i1.46554.
L. F. Schill, T. Piechowiak, C. Laroche, and P. Mowlaee, “Comparing neural network architectures for non-intrusive speech quality prediction,” Speech Commun., vol. 165, 2024, doi: 10.1016/j.specom.2024.103123.
A. Kasperuk and S. K. Zieli?ski, “Non-intrusive method for audio quality assessment of lossy-compressed music recordings using convolutional neural networks,” Int. J. Electron. Telecommun., vol. 70, no. 2, pp. 331–339, 2024, doi: 10.24425/ijet.2024.149549.
M. Chinen, F. S. C. Lim, J. Skoglund, N. Gureev, F. O’Gorman, and A. Hines, “ViSQOL v3: An Open Source Production Ready Objective Speech and Audio Metric,” 2020 12th Int. Conf. Qual. Multimed. Exp. QoMEX 2020, 2020, doi: 10.1109/QoMEX48832.2020.9123150.
A. Chaerunnisa, “Analisis Kepuasan Pengguna pada Layanan Musik Streaming Aplikasi YouTube Music Mobile Menggunakan Model EUCS,” Institutional Repos. UIN Syarif Hidayatullah, pp. 1–23, 2024.
O. Barkovska and A. Havrashenko, “Kharkiv National University of Radio Electronics , Kharkiv , Ukraine RESEARCH OF THE IMPACT OF NOISE REDUCTION METHODS,” pp. 57–65, 2024, doi: 10.18664/ikszt.v29i3.313606.
I. Salsabila, S. Anwar, and R. Radhiah, “Perbandingan Kualitas Suara Smartphone Menggunakan Metode Dynamic Time Warping (DTW),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 82–90, 2021, doi: 10.29207/resti.v5i1.2764.
Sofwatillah, Risnita, M. S. Jailani, and D. A. Saksitha, “Teknik Analisis Data Kuantitatif dan Kualitatif dalam Penelitian Ilmiah,” J. Genta Mulia, vol. 15, no. 2, pp. 79–91, 2024.
D. Murwaningrum and R. A. Indrayuana, “Pink Noise Sebagai Guide Dalam Mixing,” Sorai J. Pengkaj. dan Pencipta. Musik, vol. 16, no. 1, pp. 45–54, 2023, doi: 10.33153/sorai.v16i1.5086.
C. Ick and B. McFee, “Sound event detection in urban audio with single and multi-rate PCEN,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2021-June, pp. 880–884, 2021, doi: 10.1109/ICASSP39728.2021.9414697.
J. Nistal, S. Lattner, and G. Richard, “Conditioning Using Generative Adversarial Networks,” 2021.
S. Sadrizadeh, N. Zarmehi, E. A. Kangarshahi, H. Abin, and F. Marvasti, “A Fast Iterative Method for Removing Impulsive Noise from Sparse Signals,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 1, pp. 38–48, 2021, doi: 10.1109/TCSVT.2020.2969563.
R. Soepeno, “Wireshark: An Effective Tool for Network Analysis,” CYBV - Introd. Methods Netw. Anal., no. September, pp. 1–15, 2023, doi: 10.13140/RG.2.2.34444.69769.
K. Masykuroh, A. D. Ramadhani, and N. Iryani, “Analisis Qos Dan Qoe Pada Video Pembelajaran Online Di Institut Teknologi Telkom Purwokerto (Ittp),” Transmisi, vol. 23, no. 2, pp. 40–47, 2021, doi: 10.14710/transmisi.23.2.40-47.
Y. Zhou, Y. Liu, and H. Niu, “Perceptual Characteristics of Voice Identification in Noisy Environments,” Appl. Sci., vol. 12, no. 23, 2022, doi: 10.3390/app122312129.
A. Nogales, J. Caracuel-Cayuela, and Á. J. García-Tejedor, “Analyzing the Influence of Diverse Background Noises on Voice Transmission: A Deep Learning Approach to Noise Suppression,” Appl. Sci., vol. 14, no. 2, 2024, doi: 10.3390/app14020740.
A. Ragano, “Data-driven Quality of Experience for Digital Audio Archives,” 2022.
A. Panca and R. Rustam, “Analisis Performansi Codec G.711 Dan G.729 Berbasis Issabel Menggunakan Metode MOS E-Model,” JOINS (Journal Inf. Syst., vol. 8, no. 2, pp. 115–124, 2023, doi: 10.33633/joins.v8i2.8534.