Systematic Literature Review Untuk Identifikasi Tentang Penggunaan Decision Support System
DOI:
https://doi.org/10.52436/1.jpti.519Kata Kunci:
Decision Support System, Systematic Literature ReviewAbstrak
Sistem pendukung keputusan dapat diartikan sebagai suatu sistem interaktif berbasis komputer yang membantu para pengambil keputusan menyelesaikan masalah-masalah yang tidak terstruktur dengan memanfaatkan data dan model. Pengembangan sistem informasi pendukung keputusan memiliki metode-metode yang beragam mulai dari metode terstruktur hingga berbasis objek. Mengingat pentingnya metode pengembangan sistem informasi pendukung keputusan dan pemilihan metode di mana sistem itu berjalan, maka pada penelitian ini dikumpulkan data-data dari penelitian terdahulu tentang Sistem Pendukung Keputusan. Data-data yang dikumpulkan adalah jurnal yang membahas tentang pengembangan Sistem Pendukung Keputusan dari tahun 2020 hingga 2024. Data-data tersebut diidentifikasi menggunakan metode Systematic Literature Review (SLR). Dengan penggunaan Metode SLR dapat dilakukan review dan identifikasi jurnal secara sistematis yang pada setiap prosesnya mengikuti langkah-langkah atau protokol yang telah ditetapkan. Hasil penelitian menunjukkan bahwa platform yang dominan digunakan dalam pengembangan sistem pendukung Keputusan adalah untuk bidang kesehatan (clinical decision support system) sedangkan metode dominan digunakan dalam menyelesaikan pengembangan sistem informasi adalah metode terstruktur.
Unduhan
Referensi
Megawaty and M. Ulfa, “Metode Sistem Penunjang Keputusan,” J. Inf. Syst. Informatics, vol. 2, no. 1, pp. 192–201, 2020, [Online]. Available: http://journal-isi.org/index.php/isi
M. Soori, F. K. G. Jough, R. Dastres, and B. Arezoo, “AI-Based Decision Support Systems in Industry 4.0, A Review,” J. Econ. Technol., 2024, doi: 10.1016/j.ject.2024.08.005.
C. Zhou, “Analytics with digital-twinning: A decision support system for maintaining a resilient port,” Decis. Support Syst., vol. 143, 2021, doi: 10.1016/j.dss.2021.113496.
D. Handayani, Rasim, and A. Najib, “Decision Support System for Best Employee Evaluation Using the,” nternational J. Inf. Technol. Comput. Sci. Appl., vol. 02, no. 03, pp. 169–181, 2024.
S. D. Yulianti, R. Nuraini, M. I. Shalahudin, and M. H. Prayitno, “Decision support system for selection of exemplary students using the analytical hierarchy process (AHP) method,” J. Tek. Inform. C.I.T Medicom, vol. 15, no. 2, pp. 96–107, 2023, doi: 10.35335/cit.vol15.2023.461.pp96-107.
G. Talari, “State of the art review of Big Data and web-based Decision Support Systems (DSS) for food safety risk assessment with respect to climate change,” Trends Food Sci. Technol., vol. 126, no. Query date: 2025-04-26 00:51:2360 PG-192-204, pp. 192–204, 2022, doi: 10.1016/j.tifs.2021.08.032.
B. M. Napoleão, F. Petrillo, and S. Hallé, “Continuous Systematic Literature Review: An Approach for Open Science,” 2021, [Online]. Available: http://arxiv.org/abs/2108.12922
N. H. Sutanto, E. Utami, and R. Rismayani, “Systematic Literature Review untuk Identifikasi Metode Evaluasi Website Layanan Pendidikan di Indonesia,” J. Ilm. IT CIDA, vol. 7, no. 1, pp. 1–22, 2021, doi: 10.55635/jic.v7i1.133.
M. Razavian, B. Paech, and A. Tang, “Empirical research for software architecture decision making: An analysis,” J. Syst. Softw., vol. 149, pp. 360–381, 2019, doi: 10.1016/j.jss.2018.12.003.
K. Govindan, “A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19),” Transp. Res. Part E Logist. Transp. Rev., vol. 138, 2020, doi: 10.1016/j.tre.2020.101967.
S. Moradi, “Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran,” Energy Strateg. Rev., vol. 29, 2020, doi: 10.1016/j.esr.2020.100478.
N. L. Fitriyani, “HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System,” IEEE Access, vol. 8, pp. 133034–133050, 2020, doi: 10.1109/ACCESS.2020.3010511.
S. Sachan, J. B. Yang, D. L. Xu, D. E. Benavides, and Y. Li, “An explainable AI decision-support-system to automate loan underwriting,” Expert Syst. Appl., vol. 144, p. 113100, 2020, doi: 10.1016/j.eswa.2019.113100.
S. Arena, “A novel decision support system for managing predictive maintenance strategies based on machine learning approaches,” Saf. Sci., vol. 146, 2022, doi: 10.1016/j.ssci.2021.105529.
M. Cinelli, “Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system,” Eur. J. Oper. Res., vol. 302, no. 2 PG-633–651, pp. 633–651, 2022, doi: 10.1016/j.ejor.2022.01.011.
F. Psarommatis and D. Kiritsis, “A hybrid Decision Support System for automating decision making in the event of defects in the era of Zero Defect Manufacturing,” J. Ind. Inf. Integr., vol. 26, p. 100263, 2022, doi: 10.1016/j.jii.2021.100263.
Y. Yun, “Human–computer interaction-based Decision Support System with Applications in Data Mining,” Futur. Gener. Comput. Syst., vol. 114, pp. 285–289, 2021, doi: 10.1016/j.future.2020.07.048.
Y. Guo, “The internet of things-based decision support system for information processing in intelligent manufacturing using data mining technology,” Mech. Syst. Signal Process., vol. 142, 2020, doi: 10.1016/j.ymssp.2020.106630.
L. A. Guzman, “A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region,” Land use policy, vol. 92, 2020, doi: 10.1016/j.landusepol.2019.104445.
R. Chand, “Framework for Identifying Research Gaps for Future Academic Research,” IRA Int. J. Educ. Multidiscip. Stud., vol. 19, no. 2, p. 160, 2023, doi: 10.21013/jems.v19.n2.p12.










